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Abstract 
 

We explore whether the integration of carbon offsets into investment portfolios improves perfor-
mance. Our results show that investment strategies that include such offsets achieve higher Sharpe 
Ratios than the diversified benchmark portfolios. The efficient frontier of optimal portfolio choices 
is shifted upwards as a result of including compliance and voluntary carbon offsets in the portfolio. 
Our results also show that while diversified portfolios may benefit from carbon offsets integration, 
voluntary carbon offsets are significantly more sensitive to exogenous shocks than compliance carbon 
allowances. All these results are novel and may encourage investors to invest in such sustainable asset 
classes. 
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1. Introduction 

The global volume of voluntary carbon offsets resulting from avoided deforestation, afforestation or 

renewable energies, among others, is expected to grow from approximately USD 1 bn. in 2021 to 

USD 50 bn. in 2030, according to most recent estimates (Blaufelder et al., 2021). Such an exponential 

growth potential will likely attract new investors to a market which has traditionally been dominated 

by international companies with voluntary net-zero goals, foundations, philanthropists, and govern-

ments, mostly from developed countries. In comparison, the compliance carbon markets around the 

world are huge, the largest being the European Emissions Trading Scheme (EU ETS).1 The goal of 

this study is to analyze whether it is worth the while investing in compliance allowances and voluntary 

carbon offsets2 from a risk-return perspective, making use of the publicly available EU ETS pricing 

data and the scarce publicly available pricing and return data for voluntary carbon offsets.  

We document that when compliance allowances and voluntary carbon offsets are included in 

asset portfolios and in portfolio optimization strategies, the risk-return profile of the analyzed invest-

ment strategies improves. Significantly higher Sharpe Ratios are obtained when compliance allow-

ances and voluntary carbon offsets are part of the asset allocation mix that includes all relevant tradi-

tional asset classes. These results, which are documented for the first time in the literature, are likely 

to attract more and new investors such as purely financially motivated or retail investors especially 

to voluntary carbon markets. This, in turn, may result in more fund flows into these markets and, 

hence, ultimately lead to more environmental protection thereby making a significant contribution to 

the fight against climate change. 

Nordhaus (1977; 1991; 1992), among others pioneered the idea of incorporating climate risks 

into macro analyses. Traditionally, asset and investment managers focused on determining intrinsic 

                                              
1 Global compliance carbon markets reached a size of USD 851 bn. in 2021, with the EU ETS accounting for the lion’s 
share of USD 769 bn. (Refinitiv, 2022). 
2 We use the term ‘carbon offsets’ as to classify voluntary carbon offsets as carbon credits for the purpose for offsetting 
emissions while compliance allowances are permits or certificates backed by regulators for the permission to pollute or 
the purpose of ‘offsetting’ regulated emissions.  
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and extrinsic values of financial and physical assets without a major focus on internalizing, for in-

stance, human-driven carbon emissions. Nowadays, there is wide agreement about the reality of cli-

mate change and its impact on people’s way of life. Human-driven activities account for most of the 

ongoing climate change and pose large aggregate risks to the economy and the global financial system 

(Behnam et al., 2020). To maintain a smooth consumption stream, however, investors aim to deter-

mine the sensitivity of each component of the overall portfolio to changes in asset returns in what can 

be called the effective asset mix. Asset class factor models provide intuitive ways of observing the 

sensitivities of portfolio returns to each risk factor; modeled for (1) mutual exclusivity, (2) exhaus-

tivity, and (3) ‘differing’ returns (Sharpe, 1992). However, most crucial to asset allocation is the 

construction of portfolios that offer attractive risk-reward characteristics. 

Very little is documented in the literature about the contribution of compliance allowances 

and especially voluntary carbon offsets to portfolio performance and optimal asset allocation in gen-

eral. This study provides first empirical evidence addressing this open research question. The central 

objective of this paper is to understand and compare the performance of portfolios that integrate com-

pliance allowances and voluntary carbon offsets versus those that do not. We construct several com-

binations of optimal portfolios under the mean-variance framework and measure portfolio perfor-

mance using Sharpe Ratios by integrating compliance allowances and voluntary carbon offsets into a 

benchmark asset portfolio of bonds, commodities, currencies, equities, lumber and REITS. To gauge 

portfolio outperformance, we conduct in-sample-out-of-time tests on the basis of optimal portfolio 

weights constructed from a rolling sample window of the last 90 days. We construct an inverted 

studentized bootstrap of the difference in Sharpe Ratios from the different combinations of portfolios 

to test for the significance of Sharpe Ratio differences and reject the null of no statistical difference 

in Sharpe Ratios by applying inference methods outlined in Ledoit and Wolf (2008). 

Our results mostly show that portfolios that include the compliance allowances and voluntary 

carbon offsets outperform those that do not both in-sample and in-sample-out-of-time. In particular, 
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the inclusion of compliance allowances and voluntary carbon offsets proxied by the European Emis-

sions Allowances (EUA), Global Emission Offset Futures (GEO) and Nature-based GEO (NGEO) 

significantly increases portfolio Sharpe Ratios. In fact, we show that including EUA, GEO and/or 

NGEO in the benchmark asset portfolio causes the efficient frontier of optimal portfolio choices to 

be shifted upwards for the in-sample analyses. 

Additionally, GEO and NGEO exhibit properties unique to independent asset classes: i) low 

external correlations, ii) significant internal correlations, and iii) differing returns. Conte and Kotchen 

(2010) show that price discovery in voluntary carbon markets is uniquely driven by project charac-

teristics which may be economically reinforced by buyers. We argue that unstandardized price dis-

covery and non-mandatory participation are fundamental to voluntary carbon markets  ́ design (ver-

sus, e.g., compliance carbon markets or other asset classes) and remains a key reason for the low 

external correlations. 

To gain further insight into the risk-return properties of the emissions products we study, we 

explore their volatility and return spillover behaviors in a network system. We observe that for most 

of the portfolios we construct, carbon products are volatility and return recipients. This empirical 

result seems consistent from a macro perspective as net carbon emissions are major by-products of 

human economic activity. In particular, we identify volatility spillover patterns from some asset clas-

ses (bonds in particular) which feature prominently with GEO and NGEO but not with EUA. As bond 

markets are broadly accepted to be a key indicator for the health of the global economy, the spillover 

results suggest GEO and NGEO may be sensitive to exogenous shocks tied to the economy. 

On the contrary, we find EUA to be more resilient to volatility spillovers from bonds. In fact, 

EUA tends to be a marginal transmitter of volatility in the networks we study. While this result does 

not exclusively absolve EUAs from exogenous shocks tied to the economy, it may be explained by 

the fact that more and more companies are beginning to consider the cost of emissions as a balance 

sheet item, thereby making EUA a potential volatility transmitter in a network. We find this conjec-

ture to be confirmed in in-sample out-of-time analyses where optimal rolling GEO and NGEO 
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weights drop-off significantly at the onset of the war between Russia and Ukraine. These results, 

which, to the best of our knowledge, are documented for the first time in the literature, provide em-

pirical evidence that in the fight against climate change, voluntary abatements may become a second-

ary priority in the presence of large negative and asymmetric shocks to the global economy. 

While the literature on portfolio optimization with compliance allowances and voluntary car-

bon offsets is scarce, the literature on the broader field of climate finance is growing. Jagannathan 

and Ma (2019) argue that investors can reduce overall portfolio risk by integrating sustainability cri-

teria into the investment process. Rameli et al. (2021) show that investors react to political events 

related to firms’ climate response strategies. Heinkel et al. (2001) show how divestment from high 

carbon emission companies may result in higher stock returns. Hong et al. (2019) explore how climate 

risk is priced into equity markets. Hsu et al. (2022) provide a framework that shows how high pollut-

ing firms are more exposed to environmental regulation risk and command higher risk premiums. 

Engle et al. (2020) argue that dynamic portfolio management strategies of climate risk may be pur-

sued by extracting actionable investment intelligence from a Wall Street Journal-based climate news 

index. Choi et al. (2020) show that carbon-intensive firms  ́ equity prices underperform during times 

with abnormally warm weather. The results of our study add to this literature by documenting for the 

first time the benefits of including compliance allowances and voluntary carbon offsets into asset 

allocation and portfolio optimization. 

The rest of this paper is organized as follows. Section 2 presents an overview of carbon mar-

kets. Section 3 presents all data used in this paper and the empirical approach used in the empirical 

analyses. All results are presented in Section 4 and conclusions are outlined in section 5. 

 

2. Carbon markets 

Carbon markets may be broadly classified into compliance and voluntary carbon markets. Compli-

ance carbon markets have historically garnered lots of attention, providing agents with real options 

to pollute backed by regulators. The largest compliance carbon market, the EU ETS accounts for 
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about 90% of the global compliance carbon market. In terms of market design, the EU ETS is made 

up of primary and secondary markets. The primary market organises auctions where agents directly 

purchase certificates at a minimum price set by the regulator. The secondary market allows demand 

and supply interactions between agents at organised marketplaces and provides support for prices. 

Surplus positions provide a market for speculators who pursue shorter-term small-scale investments 

to arbitrage price changes, thus providing liquidity and reducing short-term fluctuations in the market 

(Schopp et al., 2015). Arbitrage is mostly pursued by banks. Since EUA certificates are bankable at 

zero cost, banks procure significant amounts and sell them forward. When agent interactions do not 

yield sufficient demand-side price support, the regulatory toolbox includes supply-side instruments 

for achieving price support. In 2014, the European Commission designed a Market Stability Reserve 

(MSR) in a bid to reduce the surplus of emissions certificates. These unilateral market interventions 

are triggered by the breach of an upper tolerance limit of emissions surpluses. If surpluses fall below 

a predefined lower trigger, some allowances are released from the reserve. 

 The major difference between compliance and voluntary carbon markets is in their market 

design, operation and price discovery. Voluntary carbon markets offer participants the promise of a 

direct reduction, removal or avoidance of carbon emissions underlined by a carbon project. The value 

of voluntary carbon offsets may account for a variety of factors such as project type, location and 

buyer preferences, amongst others.3 This unique market design has direct implications for price dis-

covery which is murkier than in standard traded commodities, but also ensures that voluntary offsets 

are different from equities, cash or bonds. Hence and crucially, price discovery is intrinsically deter-

mined by project characteristics (Conte and Kotchen, 2009). 

GEO offers physical settlement of carbon offsets from three different registries as underlying. 4 

GEO-based certificates meet the eligibility criteria for the Carbon Offsetting and Reduction Scheme 

                                              
3 Project prices are a function of budgetary allocations. Economically, intrinsic carbon value would be at least equivalent 
to drivers of GHG emissions. 
4 These are Verified Carbon Standard, American Carbon Registry and Climate Action Reserve. 
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for the International Aviation (CORSIA). Similar to GEO, N-GEO offers the possibility for corpora-

tions to offset net carbon emissions using nature-based agriculture, forestry and other land use pro-

jects (AFOLU). N-GEO projects are registered under the Verified Carbon Standard (VCS) and Cli-

mate Community and Biodiversity Standards (CCB) labels. GEO and N-GEO bring more transpar-

ency to the price discovery process in the voluntary market and offer risk and portfolio managers new 

tools for managing net emission exposures and risks. 

 

3. Data and investment strategies 

This sutdy assesses the performance of portfolios that integrate compliance allowances and voluntary 

carbon offsets versus those that do not. We construct three categories of portfolios from a set of 

established asset classes and emissions-based products under the mean-variance paradigm, subject to 

different optimization constraints. Table 1 presents the assets considered in this paper and their re-

spective proxies. Category 1 portfolios are constructed using data from 7th October, 2017 – 13th Oc-

tober, 2022. Category 2 portfolios comprise the time period 1st March, 2021 – 13th October, 2022. 

For category 3, we include prices from 4th August, 2021 – 13th October, 2022 for the respective assets. 

We obtain daily close of business information for all assets from BarChart, DataStream and 

NASDAQ for the period October, 2017, to October, 2022. 

The selection of traditional asset classes was guided by considerations such as being able to 

gain exposure to asset classes generally available to reasonably sophisticated investors. While ignor-

ing single assets within asset classes, whenever available, we opted for investable assets, mostly Ex-

change Traded Funds (ETFs). The ETFs selected track indices that broadly represent the asset classes. 

Hence their performances are intrinsically linked to their underlying construction and are replicable 

with assets within each asset class. Additionally, the ETFs function as plausible retail proxies for 

asset classes providing wide exposure within each traditional asset class and the chance to explore 

performance benefits of integrating emissions-based products with more established asset classes. 

Considering that a major by-product of all human activity is carbon-related emissions, we include 



9 

commodities (S&P GSCI Commodities) and lumber. Foresters and landowners are constantly faced 

with the choice of either felling trees or preserving forests. The inclusion of lumber thus represents 

value gained from alternative land usage other than preservation and captures purely financial incen-

tives and preferences. 

Figure 1 visualises the universe of assets considered in this paper. All prices are indexed to 

the initial prices in order to visualise their respective price evolution over the period. Compliance 

carbon, proxied by the EUA, is most dominant in Figure 1 as it rises by over 2.5 times above its initial 

level during the period. Similarly, GEO, NGEO and lumber experience boom periods, albeit to lesser 

extents in that order. We observe the unanimous drop in all asset prices at the onset of the COVID-

19 pandemic in 2020 and the general downward trend in price growth at the beginning of 2022, for 

instance, because of the Russia-Ukraine war and inflation. In fact, EUA, GEO and NGEO prices 

experience sharp declines at the beginning of the war on 24th February, 2022. 

Figures 2-4 present significance tests for the correlation relationships between the assets 

within the different time periods. Figure 2 presents results of correlation significance tests of returns 

between asset pairs masking out correlation pairs that miss conventional significance. Portfolios 

formed from the dataset in Figure 2 fall under category 1 portfolios. We observe statistically signifi-

cant correlation between EUA returns and all assets in the dataset over this 5-year period. Considering 

that emissions are a by-product of most economic activities, the value of EUA may have both short 

and long run relationships5 with the assets in our universe. Figures 3-4 integrate GEO and NGEO 

returns into the correlation matrix. For category 2 data, GEO is statistically uncorrelated with any of 

the other asset classes. In Figure 4, we observe that NGEO, which offers a means to achieve emis-

sions-reduction targets using high-quality, nature-based offsets sourced exclusively from agriculture, 

                                              
5 Gronwald et al. (2011) document a positive dependence structure between EUA and coal, gas and power futures and 
EUA versus equity spot returns. Chevallier (2009) finds weak forecasting evidence of EUA futures using equity dividend 
yields and the junk bond premium. Chevallier (2011) finds time-varying interactions between EUA, macroeconomic 
variables and commodities while Chen et al. (2019) show a stable yet time-varying correlation between a variety of energy 
commodities and the EUA. 
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forestry, and other land use (AFOLU) projects, has a statistically weak negative correlation with com-

modities and, more importantly, a moderately positive correlation with GEO. GEO and NGEO exhibit 

moderate internal but low external correlations in a result that is underlined by the murky price dis-

covery process in voluntary carbon markets. 

We do not observe any significant correlation between GEO/NGEO and EUA which is ini-

tially surprising. This may be due to the structural differences in their market design. Behr et al.  

(2022) show empirically that compliance markets respond more strongly than voluntary carbon mar-

kets to climate policy events, partly by design. Appendix Figures 1-3 provide further evidence of the 

time-varying correlations between the assets and EUA, GEO and NGEO and the rather low external 

correlations between GEO and NGEO and other asset classes across the three data categories based 

on 250- and 60-day rolling windows respectively. 

To estimate returns, we refrain from using historical means as these have been shown to be 

rather uninformative in the literature. They tend to reinforce estimation error-maximization and 

spread these errors in the expected returns vector (Lee, 2000; Michaud, 1989). Several studies estab-

lish the theoretical and empirical inadmissibility of historical returns for portfolio optimization6 while 

others7 develop and test various Bayesian and non-Bayesian solutions for extracting risk-adjusted 

expected returns using various extensions of the capital asset pricing model (CAPM).  

In this paper, we back out risk-adjusted expected returns using the well-known capital asset-

pricing model (Sharpe, 1964). In the absence of an appropriate market reference, we construct an 

equally-weighted market portfolio from the asset universe for each category from which expected 

risk-adjusted returns are backed out. In the absence of a sufficiently long time series history that bakes 

in several business and economic cycles, backing out risk-adjusted returns for each asset captures the 

expected returns for which investors are willing to hold the assets in our universe and provides a 

reasonable equilibrium reference. 

                                              
6 See Jorion (1991), Berger and Bock (1976), Efron and Morris (1973; 1975; 1976), Michaud (1989; 2019). 
7 See Mynbayeva et al. (2021) Jorion (1991); Black and Litterman (1992); Esmaeili et al. (2021). 
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For the variance-covariance matrix, we apply the Ledoit and Wolf (2004) shrinkage method-

ology to reduce the kind of estimation error likely to perturb a mean-variance optimizer8. The opera-

tional shrinkage estimator of the covariance matrix Σ is given by: 

Σ�𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛿𝛿∗�𝐹𝐹 + �1−  𝛿𝛿∗��𝑆𝑆 

where 0 ≤ 𝛿𝛿∗ < 1 is a shrinkage constant that minimizes the expected distance between the shrinkage 

estimator and the true covariance matrix.9 

With 𝜇̂𝜇 and Σ�𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 known, we are able to estimate portfolio weights 𝑊𝑊 on the basis of the 

investors’ utility function in equation (2). Finally, to quantify portfolio performance, we compute 

Sharpe Ratios for each constructed portfolio strategy as: 

𝑆𝑆𝑆𝑆 =  𝜇𝜇�−𝑟𝑟𝑓𝑓
𝛿𝛿�

  (4) 

where 𝜇̂𝜇 is the calculated portfolio return, 𝑟𝑟𝑓𝑓  the risk-free rate of return10, and 𝛿𝛿 the portfolio standard 

deviation. 

Table 2 presents the respective number of observations (N), the CAPM-based expected returns 

E[µ], and the Ledoit-Wolf standard deviations LW[σ] backed out of the shrunk covariance matrix for 

the three categories of data used in this paper. Panel A comprises EUA and the six assets – bonds, 

commodities, currencies, equities, lumber, and REITS – which we refer to as the benchmark portfolio. 

EUA has the highest expected risk-adjusted return (0.267) and volatility (0.454), just ahead of lumber. 

Panel B comprises all assets listed in Panel A but includes GEO. Here, GEO has the second highest 

mean (0.245) and volatility (0.561) after lumber, while the EUA profile of high expected returns 

(0.224) and volatility (0.495) is also validated in this period. Panel C includes all assets listed in Panel 

B and adds NGEO. Compared to other assets in our asset universe, investors require higher returns 

                                              
8 There is an extensive literature on the Bayesian approach to estimation error some relying on diffusion priors. These 
include Barry (1974) and Bawa et al. (1979). As regards shrinkage estimators, confer to Jobson and Korkie (1981) or 
Memmel (2003). In terms of asset pricing priors cf. Pástor, (2000) or Pástor and Stambaugh, (2000), among others. 
9 We apply a constant variance shrinkage, i.e., target  𝛿𝛿∗ = 𝜇𝜇(𝜎𝜎11

2 ,… , 𝜎𝜎𝑗𝑗𝑗𝑗2 ) is the mean of asset variances on the diagonal 

and zero elsewhere     �
𝜎𝜎211 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝜎2𝑗𝑗𝑗𝑗

�. 

10 Set at 2%. 
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to hold EUA, GEO, NGEO and lumber, compensating for the higher volatility associated with these 

assets. On the contrary, we observe that bonds report the lowest risk-adjusted expected returns and 

volatility, accounting for investors’ perception of a low default probability of U.S. Government 

bonds. All assets have positive risk-adjusted expected returns across all data categories. 

Table 3 provides insights into the covariance matrix across the three categories. The parameter 

estimates provided represent the shrunk covariance matrix from Ledoit and Wolf (2004) covariance. 

An important characteristic of diversified portfolios is their low covariances with other assets in the 

portfolio. We observe that across all categories, the established benchmark assets exhibit low covar-

iances with each other.11 EUA, GEO and NGEO also report low covariances with the benchmark 

assets.12 Assets with high expected returns and low or negative covariances with other assets are 

usually good components of diversified portfolios. EUA, GEO and NGEO seem to fit these charac-

teristics well in the sample period. 

 

3.1 Asset volatility and return spillovers 

Volatility and return spillovers provide information about the connectedness of markets. Their im-

portance for portfolio optimization and applications in finance have been increasingly discussed in 

the literature (see Diebold and Yilmaz, 2009, 2012; Dahl and Jonsson, 2018; Kang et al., 2017; Lucey 

et al., 2014; Katsiampa et al., 2019; Corbet et al., 2020). Crucially, spillovers estimate the share of 

new information not fully priced into an asset. Hoang and Baur (2021) show that explicitly consider-

ing volatility and return spillovers is not necessary for asset allocation as spillovers are already incor-

porated in contemporaneous correlations of returns and volatility in the determination of optimal 

portfolio weights. In practice, however, spillovers are intuitive and important for portfolio managers 

to understand interdependencies and to identify the origin and impact of spillovers. We apply the 

                                              
11 Off-diagonals: Panel A, min/max: -0.003/0.034, Panel B, min/max: -0.012/0.028, Panel C, min/max: -0.019/0.032. 
12 Off-diagonals: EUA min/max: -0.005/0.027; GEO min/max: -0.012/0.111; NGEO min/max: -0.019/0.111. COV (GEO, 
NGEO) = 0.111 is the highest covariance result and synonymous with high internal correlation. 
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Diebold and Yilmaz (2012) framework based on the general forecast variance decomposition intro-

duced by Pesaran and Shin (1998) to construct volatility and return spillovers for the respective time 

periods in our sample. Specifically, for a covariance stationary N-variable VAR(p), 𝑥𝑥𝑡𝑡 =

∑ 𝜙𝜙𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 ,    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀 ~ (0,Σ)𝑝𝑝
𝑖𝑖=1  is a vector of i.i.d. disturbances. The moving average represen-

tation is given by 𝑥𝑥𝑡𝑡 =  ∑ 𝐴𝐴𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖 ,∞
𝑖𝑖=1  where for the NxN coefficient matrices 𝐴𝐴𝑖𝑖 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 < 0. The 

variance decompositions allow us to assess the fraction of the H-step-ahead error variance in 𝑥𝑥𝑖𝑖 fore-

casts due to shocks to 𝑥𝑥𝑗𝑗,∀ 𝑗𝑗 ≠ 𝑖𝑖 for each 𝑖𝑖. We can write the directional volatility (return) spillover 

received by asset 𝑖𝑖 from all other assets 𝑗𝑗 as: 

𝑆𝑆𝑖𝑖.
𝑔𝑔(𝐻𝐻) =  

∑ 𝜃𝜃𝚤𝚤𝚤𝚤� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁 ∗ 100 

Similarly, the directional volatility (return) spill-overs from asset 𝑗𝑗 to all other assets 𝑖𝑖 may be written 

as  

𝑆𝑆.𝑖𝑖
𝑔𝑔(𝐻𝐻) =  

∑ 𝜃𝜃𝚥𝚥𝚥𝚥�(𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁 ∗ 100 

Accordingly, net spillover from asset 𝑖𝑖 to all other assets may be written as 

𝑆𝑆𝑖𝑖
𝑔𝑔(𝐻𝐻) = 𝑆𝑆.𝑖𝑖

𝑔𝑔(𝐻𝐻)−  𝑆𝑆𝑖𝑖.
𝑔𝑔(𝐻𝐻) 

To facilitate x portfolio construction tests including EUA, GEO and N-GEO, we stratify the dataset 

into three data categories as previously explained, the latter two on the basis of when data are availa-

ble for GEO and NGEO. 

 

3.2 Asset allocation portfolios 

We aim to build broad, diversified and stable portfolios that provide the best risk-return performance. 

Generally, we consider our objective and constraints to be convex as is standard in the finance liter-

ature. What follows is a description of the framework within which we construct all portfolios. The 

list of strategies includes Naïve (1/N) diversification, a CAPM strategy which we split into Long Only 
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Strategy and Long-Short Strategy for in-sample out-of-time tests and the Minimum Volatility strat-

egy. 

We denote with 𝑅𝑅𝑡𝑡 the N-vector of risk-adjusted returns on the N risky assets; 𝜇𝜇𝑡𝑡 is an Nx1 

vector of risk-adjusted expected returns from a CAPM model with an equally-weighted market bench-

mark constructed from all assets in the portfolio, and Σ𝑡𝑡 , the Ledoit-Wolf shrunk variance covariance 

matrix of dimension NxN. Let their estimated versions be called 𝜇̂𝜇𝑡𝑡 and Σ�𝑡𝑡  respectively. Also, let T 

be the length of the data series and 𝟏𝟏𝑁𝑁 an N-dimensional unit vector. Finally, 𝑊𝑊 is an Nx1 vector of 

invested portfolio weights in the N assets. For the avoidance of doubt, the normalized portfolio 

weights with directional orthogonality preserved is represented as: 

𝑊𝑊𝑡𝑡 =  𝑤𝑤𝑡𝑡
|𝟏𝟏𝑁𝑁
𝑇𝑇𝑤𝑤𝑡𝑡|

     (1) 

To enable within-strategy portfolio result comparisons, we consider a standard mean-variance inves-

tor who has access to the asset universe discussed above. Typically, the portfolio manager chooses 

𝑊𝑊 to maximize expected utility13: 

max
𝑊𝑊

𝑤𝑤𝑡𝑡𝑇𝑇𝜇𝜇𝑡𝑡 −
𝛾𝛾
2
𝑤𝑤𝑡𝑡𝑇𝑇Σ𝑡𝑡𝑤𝑤𝑡𝑡   (2) 

where 𝛾𝛾 may be considered as investor risk aversion and the solution to the optimization problem  

𝑤𝑤𝑡𝑡 =
1
𝛾𝛾 Σ𝑡𝑡

−1μ 

Hence, the vector of weights invested within the portfolio of N assets at time t may be characterized 

as 

                                            𝑊𝑊𝑡𝑡 = Σ𝑡𝑡
−1μt

1𝑁𝑁Σ𝑡𝑡
−1μt

     (3) 

                                              
13 Notice that we obtain a lean Black-Litterman model from a Markowitz (1952) framework when we set views to be 
same as priors. In this case, equilibrium returns and the shrunk covariance matrix are the model inputs. Views can induce 
subjectivity in the allocation process. Using notation in Black and Litterman (1992), in this case confidences Ω may be 
set proportionally to the variance of the priors ∏ ie  Ω=  𝜏𝜏𝜏𝜏∑𝑃𝑃𝑇𝑇. We constructed views from a sentiment-based index 
using three of the Baker and Wurgler (2006) factors: Change in Traded Volumes on US Equity Markets, the Volatility 
Index and SKEW Index from the Chicago Board Options Exchange to develop views as in the classic Black-Litterman 
model and obtained qualitatively similar results.  
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To evaluate portfolio return properties, we conduct two kinds of tests. The first test involves holding 

a strategy from the beginning till the end of the period. The second test involves performing in-sample 

out-of-time tests to evaluate portfolio performance. As a direct consequence of the former case, 𝑊𝑊 is 

static and the varying factor is the set of imposed constraints and the estimation of μ and Σ. For these 

tests, we also incorporate a 1% linear transaction cost model for each portfolio rebalancing.14 

 
3.3. Portfolio strategies 

Naïve Diversification (1/N) 

The naïve strategy involves assigning weights of 1/N to each of the N risky assets in the portfolio. 

Portfolio optimization and covariance matrix estimation are not required. Naturally, we impose con-

straints that expected returns are proportional to total risk rather than systematic risk. DeMiguel et al.  

(2009) show that, out-of-sample, the gain from optimal diversification is more than offset by estima-

tion errors when compared with the naïve 1/N strategy. The naïve strategy offers the simplest form 

of portfolio diversification and is most intuitive and easy to implement. 

 

Long Only Strategy 

For the long only strategy, we impose non-negativity constraints on portfolio weights (no short-sell-

ing allowed in this strategy) in optimization problems. All positions are entered into at the beginning 

of our sample period and exited at the end. In addition to all of the above, our convex system is 

subjected to the following extra constraints: 

𝑤𝑤:𝑤𝑤𝑖𝑖 ≥ 0 

� 𝑤𝑤𝑖𝑖
∀ 𝑖𝑖 𝜖𝜖 𝑁𝑁

= 1 

  

                                              
14 We make an exception for the Naïve Diversification as positions are constant from beginning to end of period. 
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Long – Short Strategy 

For this strategy, we relax the non-negativity constraints. Short positions or leverage may provide 

flexibility and may be beneficial in scaling trading strategies. Weight constraints for this strategy 

change to: 

𝑤𝑤:−1 ≤ 𝑤𝑤𝑖𝑖 ≤ 1 ,  ∑ 𝑤𝑤𝑖𝑖∀ 𝑖𝑖 𝜖𝜖 𝑁𝑁 = 1 

 

Minimum Variance Strategy 

While we do not seek to test strategy outperformance, a wide body of literature (see Kritzman et al. , 

2010) suggests that minimum variance portfolios formed from optimization often perform better out-

of-sample given the difficulty of forecasting expected returns. Behr et al. (2013) find that a con-

strained minimum-variance strategy outperforms a naïve (1/N) portfolio Sharpe Ratio-wise, in con-

trast to DeMiguel et al. (2009). In our case, we only aim to compare portfolio strategy performances 

with and without emissions products. We choose portfolios of risky assets that minimize the volatilit y 

of returns, i.e. 

min
𝑊𝑊𝑡𝑡

 𝑤𝑤𝑡𝑡𝑇𝑇Σ𝑡𝑡𝑤𝑤𝑡𝑡    ∑ 𝑤𝑤𝑖𝑖∀ 𝑖𝑖 𝜖𝜖 𝑁𝑁 = 1 

 
3.4 Portfolio performance measurement 

To assess performance of portfolios that include EUA and/or GEO and NGEO, and portfolios that do 

not, we conduct in-sample-out-of-time tests to check for differences in portfolio Sharpe Ratios. Con-

sider the dataset to be T days long. In the first step, we rely on a rolling sample of t-q days history 

with which we initially estimate the portfolio parameters μ, Σ and solve the optimization problem in 

(2) for the respective strategies to obtain optimal weights 𝑊𝑊𝑡𝑡 . Given the ensuing parameters, we eval-

uate portfolio performance subsequently on the basis of portfolio return and volatility. Specifically , 

at time t, 𝑊𝑊𝑡𝑡  becomes the investor’s portfolio position for the next t + j days. The algorithm progresses 

by looking at (t-q) days and evaluating portfolio performance for the next (t + j) days as earlier ob-

servations in the data series get dropped one day at a time. The algorithm outcome is a time series of 
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T-q long in-sample-out-of-time series of portfolio returns, volatility and Sharpe Ratios for each strat-

egy. We compute the in-sample-out-of-time Sharpe ratio for each strategy according to equation (4). 

 

3.5 Performance analysis 

We use the series of portfolio returns and Sharpe Ratios described above as the basis of the perfor-

mance analyses. First, we compute the 𝑖𝑖th difference between generated Sharpe Ratios for portfolios 

of the same strategy as for all portfolio pairs (𝑗𝑗, 𝑘𝑘) as: 

Δ�𝑖𝑖 = 𝑆𝑆𝑅𝑅𝚥𝚥𝚤𝚤� − 𝑆𝑆𝑅𝑅𝑘𝑘𝚤𝚤� 

We then conduct a robust test for difference in Sharpe Ratios as outlined in Ledoit and Wolf (2008). 

We present p-values corresponding to an inverted studentized bootstrap confidence interval for the 

difference in the Sharpe Ratios. There is an extensive literature suggesting improved inferential ac-

curacy of the studentized bootstrap over ‘standard’ inference based on asymptotic normality (Hall, 

1992) for time series data (Lahiri, 2003). To generate bootstrap data, we generate stationary block 

bootstraps according to Politis and Romano (1992) and resample blocks of pairs from the observed 

pairs �𝑟𝑟𝑡𝑡𝑡𝑡,𝑟𝑟𝑡𝑡𝑘𝑘�
′
 𝑡𝑡 = 1, … ,𝑇𝑇 with replacement for return pair series generated in the previous section. 

Stationary bootstrap blocks have a fixed size b≥1. Ledoit and Wolf (2008) further provide an iterative 

approach for the b selection. We generate 10,000 bootstrap samples and test 𝐻𝐻0: Δ𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 at 

significance level α applying the decision criteria outlined above.15 

 

4. Empirical results 

The aim of the tests described in the previous section was to find out if portfolios with EUA, GEO, 

NGEO or a combination of the emissions products perform better than portfolios without.16 Figure 5 

presents efficient frontiers based on portfolio specifications with (Benchmark + C) and without 

                                              
15  Notice that the studentized statistic is approximated as 𝜁𝜁 �|�Δ�−Δ�|

𝑠𝑠(Δ�)
� ⪮  𝜁𝜁��Δ

�∗−Δ�
𝑠𝑠(Δ�∗)

�, where Δ is the true difference between 

Sharpe Ratios, Δ� the estimated difference computed from the original data, s the respective standard deviation and Δ�∗ the 
Sharpe difference computed from bootstrap data. See Ledoit and Wolf (2008) for further details. 
16 Portfolio comparison definitions are provided in Table 10. 
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(Benchmark) EUA. The difference is stark. Adding EUA to the other assets results in a significant 

increase in the level of the efficient frontier. In Figure 6, a portfolio that integrates EUA and GEO 

(Benchmark + GC) or GEO alone (Benchmark + G) yields an efficient frontier higher than a portfolio 

of the other asset classes (Benchmark). Figure 7 shows efficient frontiers obtained from portfolio 

combinations including various combinations of EUA, GEO and NGEO with the benchmark portfo-

lio. As in Figures 5 and 6, including NGEO (Benchmark + N) in Figure 7 significantly raises the 

efficient frontier of optimal portfolio choices. Notice that the efficient frontiers of portfolios with 

EUA, GEO and NGEO in Figures 8 to 10 are all steeper than the efficient frontiers of portfolios 

without NGEO, GEO and EUA in this period. This result is key to the rest of this section: on a risk-

adjusted basis, the introduction of EUA, GEO or NGEO causes an upward shift of the efficient fron-

tier of optimal portfolio choices. 

 

4.1 In-sample asset allocation and optimization results 

Category one data – Benchmark + C vs. Benchmark 

Table 4 presents results from the naïve diversification, CAPM and Minimum Volatility strategies 

showing optimal weights, expected return, volatility and Sharpe Ratios, all annualized. For each strat-

egy, column (1), Benchmark + C incorporates EUA into the portfolio. Column (2) comprises only the 

benchmark. As with all in-sample portfolio optimization tests in this paper, we assume positions are 

entered into at the beginning of the period and exited at the end of the period and incorporate a 1% 

transaction cost. 

In column (1) of the table, we see that integrating EUA into the benchmark portfolio yields a 

Sharpe Ratio of 0.709 based on an annualized 9.7% return and 13.7% volatility. The benchmark port-

folio achieves 0.313 based on a 3.9% annualized return and 12.6% volatility over the same period. 

Our in-sample CAPM strategy combines elements of the Long and Long-Short strategy by construc-

tion. Using CAPM-generated returns, we allow for both long and short positions. It is easy to see that 
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based on input parameters in-sample, the Long and Long-Short strategy can yield similar weights. 17 

Integrating EUA in our CAPM specification leads to an annualized Sharpe Ratio of 0.860 in (1) versus 

0.350 for the benchmark portfolio. CAPM (1) presents a well-diversified portfolio with a 19.5% EUA 

portfolio weight. 

Similarly, the Minimum Volatility strategy leads to a well-diversified portfolio in both (1) and 

(2). Conspicuously, however, the EUA weight is only 2.6% as the objective is to minimize volatilit y 

instead of the Sharpe Ratio.18 We find that the Minimum Volatility strategy (1) yields a 0.710 annu-

alized Sharpe Ratio compared to 0.300 for the benchmark portfolio. 

Overall, integrating EUA into the benchmark portfolio yields the highest Sharpe Ratio (0.860) 

in CAPM (1). We notice as well that Naïve (1) and Minimum Volatility (1) are at least twice as large 

as their respective benchmarks (2). 

 

Category two data – Benchmark + GC, Benchmark + G vs. Benchmark 

We now present in-sample portfolio allocation and optimization results for category two data for 

Naïve Diversification, CAPM and Minimum Volatility Strategies in Table 5. As above, column (1) 

incorporates EUA and GEO (GC) into the portfolio. Column (2) incorporates only GEO (G) into the 

benchmark, while (3) comprises only the benchmark. Optimal weights in the Naïve strategy are triv-

ially determined by the number of assets incorporated in the portfolio. We find that Naïve (1) per-

forms best on an adjusted risk-return basis, integrating both EUA and GEO into the benchmark 

(Sharpe Ratio: 0.472). Naïve (2), adding GEO to the benchmark is second best (0.196) with a Sharpe 

Ratio more than 100% better than the benchmark (-0.180). CAPM (1) and CAPM (2) results are 

consistent with those reported under Naïve (1) and Naïve (2) with annualized Sharpe Ratios of at least 

3 times larger than the ones of the benchmark. EUA (16.7%) and GEO (17.0%) weights are almost 

even in CAPM (1) with GEO gaining somewhat in the absence of EUA in CAPM (2) (20.3%). In 

                                              
17 In our case, the Long and Long-Short strategies yield almost identical positions. Results are then similar for a 2 % 
minimum weight strategy. 
18 Table 2 shows EUA as one of the most volatile assets. See Appendix Figure 4 in addition. 
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both cases, we observe the desirable characteristic of high diversification and performance Sharpe 

Ratio-wise. Minimum Volatility (1) and (2) similarly perform better on a risk-adjusted basis than the 

benchmark portfolio. We again observe non-zero weights for all assets in the portfolio. As GEO is 

highly volatile in this period, we observe a rather low average weight (3.8%) for GEO in (1) and (2). 

 

Category three data – Benchmark + NGC, Benchmark + NC, Benchmark + NG, Benchmark + N vs. 

Benchmark 

For category three data, for each of Naïve, CAPM and Minimum Volatility, column (1) incorporates 

NGEO, GEO and EUA (NGC) into the benchmark portfolio. Column (2) adds NGEO and EUA (NC) 

to the benchmark. Column (3) combines GEO and NGEO (NG) with the Benchmark while column 

(4) integrates only NGEO (N). Column (5) comprises only the benchmark. The results are presented 

in Table 6. Across all three strategies, columns (1) – (4) report Sharpe Ratios larger than the bench-

mark (column 5), consistent with previous results. While the inclusion of EUA, GEO and NGEO lead 

to Sharpe Ratio differentiation across all three strategies, reported Sharpe Ratios are however broadly 

smaller than in data categories one and two, with lower annualized returns and marginally higher 

volatility especially when using CAPM. Part of this may be attributed to significant economic head-

winds over the category three period that is incorporated into risk-adjusted asset returns and covari-

ances. While EUA, GEO and NGEO are among the most volatile assets in this period, we observe 

that CAPM (5) reports a higher annualized volatility (30% vs. < 22% for each of (1) – (4)). 

 In summary, the results of this section present EUA, GEO and NGEO as significant Sharpe 

Ratio contributors to the diversified benchmark portfolios. Adding EUA, GEO or NGEO are associ-

ated with large jumps in Sharpe Ratios over those reported by the benchmark. 
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4.2. Risk-return properties of EUA, GEO and NGEO 

The results of the previous section show that the inclusion of emissions-based products EUA, GEO 

and NGEO yield a superior in-sample risk-adjusted performance measured in the form of higher an-

nualized Sharpe Ratios for the Naïve Diversification, CAPM and Minimum Volatility strategies. To 

understand how GEO and NGEO contribute to risk-return assessments, we consider the volatility and 

return spillover results depicted in Tables 7 - 9. 

Table 7 shows volatility and return spillovers that reflect category one portfolios. Spillovers 

are constructed from an underlying VAR(p) process with p determined by selecting optimal lags using 

the Akaike Information Criterion. For clarity, the estimates on the diagonal represent own shocks, 

that is, the amount of shocks a particular asset has on its own subsequent volatility while off-diagonals 

capture the directional spillovers between each asset pair. First, volatility and return spillovers ac-

count for only 2.24% of overall forecast error variance but 28.74% for all returns across assets in the 

portfolio. The aggregate spillover results show a non-trivial amount of connectedness especially 

amongst asset returns. We observe, albeit small, that EUA is marginally a net transmitter of volatilit y 

(0.09%) but a net receiver of returns (-0.68%) within the network. Demand for EUA is ensured by 

the need for agents to remain compliant with regulation and will rise with increased output across 

multiple assets, especially in boom times. This is reflected in, for example, equities (9.78%), REITS 

(7.84%), commodities (3.79%) and currencies (2.04%), which are the highest transmitters of return 

to the network in general, and to EUA. Some studies19 also show that more and more corporations 

factor carbon-related costs into the cost of doing business and which in turn introduces EUA as a 

volatility transmitting factor across multiple asset classes. EUA is a marginal net transmitter of vola-

tility in the network (0.09%). 

The net volatility spillover rises marginally while return spillovers decline in Table 8 com-

pared to Table 7. The level of volatility connectedness rises within our asset universe while return 

connectedness reduces. This is naturally the case when assets are subjected to external shocks which 

                                              
19 See Alessi et al. (2021) and Ehlers et al. (2022). 
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illicit different responses within a networked system. We observe GEO to be a net recipient of vola-

tility (-2.42%) and returns to a lower extent (-0.56%) with bonds being the largest transmitter of 

volatility (2.51%) and returns (0.18%) to GEO. The bond market is generally a key indicator for the 

health of the economy. While no direction is implied, this result suggests GEO, like most assets is 

sensitive to shocks to the broader economy. It also signals potential sensitivity to external or exoge-

nous shocks that impact the global economy. Meanwhile, EUA remains a net transmitter of volatilit y 

and a marginal return recipient. EUA is not as sensitive to volatility shocks in the bond market 

(0.01%) but is the second largest return recipient from bonds (0.35%), after currencies (0.42%). 

In Table 9, aggregate volatility connectedness of the network is markedly higher (9.58%) for 

category three portfolios while return connectedness is reported at a non-trivial 27.33%. GEO is still 

a net volatility (-2.42%) and marginal return (-0.19%) recipient. NGEO itself is a net recipient of 

volatility (-1.37%) and returns (-3.44%) in the network. The volatility spillover from bonds to GEO 

is 2.47% in category three and next largest to NGEO (0.42%). Similarly, NGEO, the sector that fo-

cuses on AFOLU-related projects in VCMs may also be sensitive to exogenous shocks. In category 

three, however, EUA is both a net transmitter of volatility and returns to the system. The EUA result 

is more synonymous to the fact that regulatory compliance to emission abatement rules has forced 

compliance carbon allowances to become a commodity capable to inducing shocks within a system. 

The result of the spillover analysis suggests that from a macro and fundamental perspective, 

positive shocks within the network will positively impact GEO and NGEO, while large negative 

asymmetric shocks will have large negative consequences for price discovery and ultimately volun-

tary carbon projects’ viability.  Compliance carbon allowances, on the contrary, may be more resilient 

to exogenous shocks as by definition compliance carbon allowances are backed by the regulator. 

These results are consistent with Khalfaoui et al. (2022) who find that the spillover connectedness 

network of the US stock market is very sensitive to market states and that the strength of the effects 

of climate change-related risks are more pronounced under bust and boom markets. 
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4.3. Portfolio strategy performance 

In this section, we present in-sample-out-of-time performance results of all portfolio allocations 

across the four discussed strategies. As outlined above, the outperformance tests work as follows. We 

estimate optimal portfolio weights by solving the portfolio optimization problem in equation (2) using 

the last 90 days20 and conduct performance analyses for the next 5, 10 and 20-day holding periods. 

Return and Sharpe Ratios over the holding periods are calculated at the end of the respective period 

and the estimation window shifts by one day. Finally, we construct a studentized bootstrap out of the 

time series of Sharpe Ratios and test for the significance in difference in Sharpe Ratios between the 

constructed portfolios using the methodology described in Ledoit and Wolf (2008). Table 10 provides 

definitions of the portfolios used in this section. 

 

Category one data – Benchmark + C vs. Benchmark 

Table 11 provides estimated annualized Sharpe Ratios per strategy for the Benchmark + C and Bench-

mark portfolios respectively from the return bootstraps. Diff accounts for the difference in the risk-

adjusted performance estimates measured, for which we test for statistical significance for subsequent 

5, 10 and 20-day holding periods. We observe that the reported Sharpe Ratios for Naïve, Long, and 

Minimum Volatility are larger for Benchmark + C than the benchmark portfolio across all holding 

periods. We observe that this difference is statistically significant at the 99% level. While Benchmark 

+ C does not outperform the benchmark portfolio for 5 and 10-day holding periods in the Long-Short 

strategy, the result for 20-day holding periods is significant. 

 

Category two data – Benchmark + GC, Benchmark + G vs. Benchmark 

Table 12 presents in-sample out-of-time performance results for category two data for the four strat-

egies. We observe that Benchmark + G and Benchmark + GC report larger and statistically significant 

Sharpe Ratios above the benchmark for the Long, and Long-Short strategy across all holding periods. 

                                              
20 We apply a 90-day history to achieve a reasonable amount of degrees of freedom for the GEO, NGEO time series. 
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As with category one data, the size of Sharpe Ratio differences is proportional to the holding periods. 

Longer holding periods may also reduce transaction costs even for relatively volatile assets through 

periods of stress. While the Naïve and Minimum Volatility strategies report larger Sharpe Ratios 

across almost all holding periods (except Minimum Volatility: Benchmark + GC), the results do not 

attain conventional significance and hence are unable to reject the null hypothesis of zero Sharpe 

Ratio difference between the emission-integrated and benchmark portfolios. 

 

Category three data – Benchmark + NGC, Benchmark + NC, Benchmark + NG, Benchmark + N vs. 

Benchmark 

Category three data focuses on integrating NGEO, GEO and EUA in the different possible combina-

tions in the benchmark portfolio in Table 13. All variables have their usual meanings. Contrary to 

results obtained until now, Sharpe Ratio differentiation in the Naïve strategy favors the benchmark 

portfolio over Benchmark + N, Benchmark + NG and Benchmark + NGC in multiple holding periods. 

For example, Benchmark + N reports a Sharpe Ratio of -2.679 vs. -2.055 for the benchmark. These 

results are consistent with the Minimum Volatility strategy where the benchmark outperforms port-

folios with NGEO, GEO and EUA across all holding periods. We do not observe a Sharpe Ratio 

differentiation in the Long Strategy. Finally, the Long-Short strategy reports Sharpe Ratios for port-

folios that include NGEO, GEO and EUA, which are generally significantly larger than the bench-

mark. 

DeMiguel et al. (2009) showed that the promised gain of out-of-sample diversification effec-

tively does not fare better than the 1/N rule. While this empirical result is true for strategy compari-

sons, in a connected economy, large idiosyncratic shocks may propagate through the network and 

generate large aggregate fluctuations (Acemoglu, 2015; Zareei, 2019). The 1/N results inadvertently 

present short-run evidence that passive diversification may be susceptible to exogenous shocks for a 

highly connected network, which features dominantly in our dataset (Russia-Ukraine war, Covid pan-

demic, inflationary pressures) in the absence of active optimization. To make sense of the results in 
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this section, we graphically present the rolling optimal weights for EUA for category one in Figure 

8; GEO + EUA and GEO for category two in Figure 9; and NGEO + GEO + EUA, NGEO + GEO 

and NGEO for category three in Figure 10. 

In Figure 8, we observe the rolling optimal, yet volatile, EUA weights in the Long and Long-

Short strategies are identical with a key difference being periodic short-selling positions accommo-

dated in the Long-Short strategy (Long strategy falls to zero). We observe that rolling optimal weights 

range between -0.6 and 0.3 in the first half of 2020 coinciding with the onset of the COVID-19 pan-

demic. Optimal long EUA positions recover, and assume short positions only briefly in the second 

half of 2021. Using estimation histories of 90 days, rolling optimal long positions in EUA are inter-

rupted at the onset of the Russia-Ukraine war with now short positions reflecting market pessimism 

and concerns in Europe about energy security and inflation.21 

Figure 9 amplifies the GEO sensitivity to exogenous shocks better. “Optimal weights: GEO 

+ EUA” sums the rolling optimal weights for GEO and EUA across the four strategies while “Optimal 

weights: GEO” shows only GEO weights. Focusing on the Long-Short strategy, it becomes clear that 

GEO positions generally drop off significantly at the onset of the war in Ukraine and do not truly 

recover, while EUA weights are responsible for the perturbations and weight volatility observed in 

“Optimal weights: GEO + EUA”. GEO weights in the Long Strategy drops off sharply to zero while 

the Minimum Volatility Strategy also reduces significantly to almost zero for all strategies. In the 

optimal flight away from GEO, GEO allocation in the Naïve Strategy remains unchanged. Figure 10 

is entirely consistent with Figure 9. In fact, NGEO and GEO dominate aggregate short-selling posi-

tions in Figure 10, compared to EUA at the onset of the war. 

The key takeaways from this section are as follows. While GEO and NGEO show evidence 

of return and ultimately Sharpe Ratio differentiation in portfolios, they also show a high sensitivity 

to exogenous shocks. EUA is fundamentally different. While the economy may observe contractions 

                                              
21 Optimization input parameters are based on t-90 days, which is then incorporated into subsequent positions taken for 
holding periods ahead. 
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and economic security become threatened, compliance carbon allowances may be more resilient as 

regulated emissions have increasingly become a balance sheet item. In the fight against climate 

change, each emission reduction counts. Fundamentally, this result may also be interpreted as fol-

lows: voluntary abatements become less urgent when having to deal with large negative exogenous 

shocks. Appendix Table 1 provides summary statistics on the optimal rolling weights for EUA, GEO 

and NGEO for the in-sample out-of-time tests. 

 

4.4. Is it worth the while incorporating carbon offsets into an investor´s portfolio allocation? 

The results of this study provide empirical reasons for integrating compliance allowances and volun-

tary carbon offsets in investment portfolios. One caveat regarding our results is that GEO and NGEO 

were launched only in 2021. Could the results therefore be biased due to potentially early interest 

from sustainable investors and corporate net-zero pledges? We reduce such potential bias by con-

structing benchmark portfolios as controls and backing out risk-adjusted expected market returns in 

all three categories for the same period for which EUA, GEO and NGEO exist to observe how the 

possible different combinations perform. If voluntary carbon offsets do not significantly contribute 

to the Sharpe Ratio, then a portfolio without them should perform similarly or better using the same 

category of reference prices. 

The performance of portfolios with voluntary carbon offsets based on return-covariance prop-

erties may only be one side of the story, which naturally raises the question of whether its risk-reward 

properties may persist? Fundamentally, while the demand of compliance carbon is necessary for firms 

to remain regulatorily compliant, demand for voluntary carbon offsets is implicitly secured through 

corporate net zero pledges, increased awareness of households and policymakers and, crucially, the 

marketplaces for other, traditional asset classes. Sustainability-conscious investing, coupled with the 

growing appetite for clean technologies – usually a by-product of voluntary and compliance carbon 

pricing – provide fundamental reasons beyond the moral argument for integrating compliance carbon 
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allowances and voluntary carbon offsets into portfolios. Nordhaus (2011) describes this as price fun-

damentalism, that is, under limited conditions, a necessary and sufficient condition for an appropriate 

innovational environment is a universal, credible and durable price on emissions which balances the 

marginal damages from emissions against abatement costs. A such, while voluntary carbon offset 

price histories are short and the market itself shows reliability issues and exogenous shock sensitivity , 

we expect the risk-reward properties documented in this study to remain robust. 

 

5. Conclusions 

In this paper, we study in-sample and in-sample-out-of-time performances of portfolios that integrate 

emissions products, proxied by compliance allowances and voluntary carbon offsets, versus those 

that do not in using the naïve, CAPM and minimum volatility strategies. Based on portfolio perfor-

mance measured by the Sharpe Ratio, portfolios that integrate voluntary (GEO and NGEO) and com-

pliance carbon allowances (EUA) consistently outperform portfolios that exclude them in-sample. 

We observe that the efficient frontier of optimal portfolio choice is shifted upwards upon introducing 

EUA, GEO or NGEO. Hence, the portfolio Sharpe component attributable to EUA, GEO and NGEO 

must be significant. The driving factors behind the portfolio diversification benefits of GEO and 

NGEO include i) low correlation with other asset classes due to unique price discovery in voluntary 

carbon markets; and ii) that voluntary carbon offsets are volatility and return spillover recipients in 

most of the portfolios we study in a manner that is consistent from a macro perspective. 

To gauge outperformance, we measure in-sample-out-of-time Sharpe Ratios of the naïve di-

versification, long, long-short and minimum variance strategies and test the difference in Sharpe Ra-

tios between portfolios with integrated emissions products and those without. We find that a bench-

mark portfolio that includes EUA consistently outperforms the benchmark. Similarly, a basket of 

portfolios that integrates GEO or GEO and EUA broadly outperforms the benchmark. However, the 

benchmark portfolio outperforms a benchmark portfolio that includes different combinations of 

NGEO, GEO and EUA for Naïve Diversification and Minimum Volatility, while the reverse is true 
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for the long-short strategy we study in-sample out-of-time. We show in our volatility and return spill-

over analyses, as well as in our in-sample out-of-time tests that the results especially show voluntary 

carbon markets’ sensitivity to exogenous shocks. In addition, the global de-carbonization trend pro-

vides a fundamental argument for integrating voluntary carbon offsets into portfolios. In many ways, 

however, our results also provide empirical evidence of how voluntary abatements become secondary 

priority in the face of exogenous shocks – a result that flouts against the well-accepted notion of ‘all 

reductions count’ in the fight against climate change. 
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Figures 

Figure 1: Price time series of all assets 
The figure below shows price development of all assets indexed against the respective initial price. The data covers the 
period 07/10/2017 – 13/10/2022 with the exception of GEO (inception: 01/03/2021) and NGEO (inception: 04/08/2021).  
Table 1 provides a description of the assets listed and sources from whence obtained. 
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Figure 2: Category one data return correlations (p-values > 0.05 masked) 
The figure below is a correlation matrix of daily asset returns for category one data (07/10/2017 – 13/10/2022). Statisti-
cally significant correlation pairs are marked by the color scale. Masked (blank) fields refer to asset pair correlations 
that miss conventional statistical significance (p-value > 0.05). 
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Figure 3: Category two data return correlations (p-values > 0.05 masked) 
The figure below is a correlation matrix of daily asset returns for category two data (01/03/2021 – 13/10/2022). Statisti-
cally significant correlation pairs are marked by the color scale. Masked (blank) fields refer to asset pair correlations 
that miss conventional statistical significance (p-value > 0.05). 
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Figure 4: Category three data return correlations (p-values > 0.05 masked) 
The figure below is a correlation matrix of asset returns for category three data (04/08/2021 – 13/10/2022). Statistically 
significant correlation pairs are marked by the color scale. Masked (blank) fields refer to asset pair correlations that 
miss conventional statistical significance (p-value > 0.05). 
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Figure 5: Efficient frontier comparison of portfolios constructed out of category one data 
The figure below provides an efficient frontier comparison of the benchmark asset portfolio (“Benchmark”) and a 
benchmark portfolio that integrates EUA (“Benchmark + C”). Annualized expected portfolio returns (%) are displayed 
on the vertical axis while annualized portfolio volatility (%) is shown on the horizontal axis. Expected returns are backed 
out of a CAPM-model with the an equally-weighted benchmark as the reference market. The CAPM-returns then serve 
as the respective market risk-adjusted expected returns. The covariance matrix is estimated using the covariance shinkage 
approach outlined in Ledoit-Wolf (2004). 
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Figure 6: Efficient frontier comparisons for portfolios constructed out of category two data 
The figure below provides an efficient frontier comparison of the benchmark portfolio (“Benchmark”) and a benchmark 
portfolio that integrates either GEO and EUA (“Benchmark + GC”) or GEO alone (“Benchmark + G”). Annualized 
expected portfolio returns (%) are displayed on the vertical axis while annualized portfolio volatility (%) is shown on the 
horizontal axis. Expected returns are backed out of a CAPM-model with the an equally-weighted benchmark as the 
reference market. The CAPM-returns then serve as the respective market risk-adjusted expected returns. The covariance 
matrix is estimated using the covariance shinkage approach outlined in Ledoit-Wolf (2004). 
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Figure 7: Efficient frontier comparisons for portfolios constructed out of category three data 
The figure below provides an efficient frontier comparison of the benchmark portfolio (“Benchmark”) and Benchmark 
portfolio that integrates either NGEO (N), GEO (G), and/or EUA (C). Annualized expected portfolio returns (%) are 
displayed on the vertical axis while annualized portfolio volatility (%) is shown on the horizontal axis. Expected returns 
are backed out of a CAPM-model with the an equally-weighted benchmark as the reference market. The CAPM-returns 
then serve as the respective market risk-adjusted expected returns. The covariance matrix is estimated using the covariance 
shinkage approach outlined in Ledoit-Wolf (2004). 
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Figure 8: Rolling optimal weights per strategy for EUA using category one data 
The figure below shows the rolling optimal weights per strategy for compliance carbon (EUA) using category one data. 
The vertical axis shows the Weight (./100) while the horizontal axis displays the Date. Optimal weights are determined 
as follows: Consider the dataset to be T days long. We rely on a rolling sample of t-90 days history with which we initially 
estimate portfolio parameters μ, Σ and solve the optimization problem for the respective strategies to obtain optimal 
weights w at time t for the respective 5-, 10- and 20-day holding periods. Expected returns are backed out of a CAPM-
model with the an equally-weighted benchmark as the reference market. The CAPM-returns then serve as the respective 
market risk-adjusted expected returns. The covariance matrix is estimated using the covariance shinkage approach 
outlined in Ledoit-Wolf (2004). This scheme is applied to the Long, Long-Short and Minimm Volatility Strategies. 
Weight allocation in Naïve Diversification is in this case trivial. 
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Figure 9: Rolling optimal weights per strategy for GEO + EUA and GEO using category two 
data 
The figure below shows the rolling optimal weights per strategy for GEO + EUA, and GEO using category two data. The 
vertical axis shows the Weight (./100) while the horizontal axis displays the Date. Optimal weights are determined as 
follows: Consider the dataset to be T days long. We rely on a rolling sample of t-90 days history with which we initially 
estimate portfolio parameters μ, Σ and solve the optimization problem for the respective strategies to obtain optimal 
weights w at time t for the respective 5-, 10- and 20-day holding periods. Expected returns are backed out of a CAPM-
model with the an equally-weighted benchmark as the reference market. The CAPM-returns then serve as the respective 
market risk-adjusted expected returns. The covariance matrix is estimated using the covariance shinkage approach 
outlined in Ledoit-Wolf (2004). This scheme is applied to the Long, Long-Short and Minimm Volatility Strategies. 
Weight allocation in Naïve Diversification is in this case trivial. 
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Figure 10: Rolling optimal weights per strategy for NGEO + GEO + EUA, NGEO + GEO, 
and NGEO using category three data 
The figure below shows the rolling optimal weights per strategy for NGEO + GEO + EUA, NGEO + GEO and NGEO 
using category three data. The vertical axis shows the Weight (./100) while the horizontal axis displays the Date. Optimal 
weights are determined as follows: Consider the dataset to be T days long. We rely on a rolling sample of t-90 days history 
with which we initially estimate portfolio parameters μ, Σ and solve the optimization problem for the respective strategies 
to obtain optimal weights w at time t for the respective 5-, 10- and 20-day holding periods. Expected returns are backed 
out of a CAPM-model with the an equally-weighted benchmark as the reference market. The CAPM-returns then serve 
as the respective market risk-adjusted expected returns. The covariance matrix is estimated using the covariance shinkage 
approach outlined in Ledoit-Wolf (2004). This scheme is applied to the Long, Long-Short and Minimm Volatility 
Strategies. Weight allocation in Naïve Diversification is in this case trivial. 
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Tables 
 
Table 1: Asset definitions and data sources 
The table lists the names of assets, description and data sources used 

Asset Description Data Source 

Bonds 
The iShares U.S. Treasury Bond ETF: seeks to track the investment results of an index composed of U.S. Treasury bonds (ICE US 
Treasury Core Bond Index). The Index is market value weighted, and is designed to include U.S. dollar denominated, fixed rate secu-
rities with minimum term to maturity greater than one year and less than or equal to thirty years.  

BarChart 

   

EUA 
European Emissions Allowances of the European Emissions Trading Scheme (EU ETS): is a cornerstone of the EU's policy to 
combat climate change and its key tool for reducing greenhouse gas emissions cost-effectively. It is the world's first major carbon 
market and remains the biggest one as of December 2021. 

BarChart 

   

Commodities 
S&P GSCI Commodity-Indexed Ishares ETF: The iShares S&P GSCI Commodity-Indexed Trust (the 'Trust') seeks to track the 
results of a fully collateralized investment in futures contracts on the S&P GSCI(R) Total Return Index composed of a diversified 
group of commodities futures. 

BarChart 

   

Currencies The WisdomTree Bloomberg U.S. Dollar Bullish Fund ETF: seeks to provide total returns, before expenses, that exceed the per-
formance of the Bloomberg Dollar Total Return Index BarChart 

   
Equities S&P 500 SPDR ETF aims to track the Standard & Poor’s (S&P) 500 Index BarChart 

   

GEO Global Emissions Offsets: is a physically settled contract that allows for delivery of CORSIA eligible voluntary carbon offset credits 
from three registries: Verified Carbon Standard (VCS), American Carbon Registry (ACR), and Climate Action Reserve (CAR).  BarChart 

   
Lumber Random Length Lumber month-ahead futures DataStream 

   

NGEO Nature-based Global Emissions Offsets: offer firms a simple way to meet emissions-reduction targets using high-quality, nature-
based offsets sourced exclusively from agriculture, forestry, and other land use (AFOLU) projects BarChart 

   
REITS Vanguard Real Estate Index Fund ETF: tracks the return of the MSCI US Investable Market Real Estate 25/50 Index BarChart 
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Table 2: Summary statistics for data category one, category two and category three data 
This table shows daily price return descriptive statistics for all datasets used in the empirical analyses. Panel A comprises 6 
assets and European Emissions Allowances (EUA) from 07/10/2017 to 13/10/2022. Panel B comprises all assets listed in Panel 
A but include GEO from 01/03/2021 to 13/10/2022. Panel C includes all assets listed in Panel B but include N-GEO from 
04/08/2021 to 13/10/2022. Summary statistics include the number of observations (N), expected returns E[µ] and the Ledoit-
Wolf standard deviation LW[σ] backed out of the diagonal of the Ledoit-Wolf shrunk covariance matrix. E[µ] = 𝑅𝑅𝑓𝑓 +
 𝛽𝛽𝑖𝑖(𝐸𝐸𝑅𝑅𝑚𝑚−𝑅𝑅𝑓𝑓) : where 𝑅𝑅𝑓𝑓 is the risk-free rate set to 2%,  𝛽𝛽𝑖𝑖 measures the relative risk of asset 𝑖𝑖 compared to the market and 
𝐸𝐸𝑅𝑅𝑚𝑚 is the expected return on market based on an equally-weighted market benchmark constructed from all assets in the 
portfolio 
 

Asset 
N E[µ] LW [σ] 

Panel A (Category one): Oct 2017 - Oct 2022 
Bonds 1,435 0.013 0.060 
EUA 1,435 0.267 0.454 
Commodities 1,435 0.124 0.236 
Currencies 1,435 0.018 0.087 
Equities 1,435 0.132 0.200 
Lumber 1,435 0.265 0.454 
REITS 1,435 0.142 0.227 
  Panel B (Category two): March 2021 - Oct 2022 
Bonds 408 0.018 0.095 
EUA 408 0.224 0.495 
Commodities 408 0.086 0.283 
Currencies 408 0.004 0.098 
Equities 408 0.095 0.201 
GEO 408 0.245 0.561 
Lumber 408 0.315 0.596 
REITS 408 0.090 0.205 
  Panel C (Category three): Aug 2021 - Oct 2022 
Bonds 299 0.019 0.129 
EUA 299 0.146 0.534 
Commodities 299 0.050 0.309 
Currencies 299 0.010 0.129 
Equities 299 0.070 0.230 
GEO 299 0.198 0.579 
Lumber 299 0.183 0.582 
NGEO 299 0.149 0.490 
REITS 299 0.066 0.231 
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Table 3: Estimated input variance-covariance matrix for in-sample portfolio optimization   
The table presents Ledoit and Wolf (2004) shrunk covariance matrix estimates of the asset universe for categories one, two 
and three. These estimates form the covariance matrices for the respective in-sample asset allocation and optimization analysis 
of the data sample used across three time series categories.  The operational shrinkage estimator of the covariance matrix Σ is 
given by: Σ�𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛿𝛿∗�𝐹𝐹+ �1−  𝛿𝛿∗��𝑆𝑆 where 0 ≤ 𝛿𝛿∗ < 1 is a shrinkage constant that minimizes the expected distance between 
the shrinkage estimator and the true covariance matrix. We apply a constant variance shrinkage, i.e., target  𝛿𝛿∗ = 𝜇𝜇(𝜎𝜎112 ,… ,𝜎𝜎𝑗𝑗𝑗𝑗2) 
is the mean of asset variances on the diagonal and zero elsewhere. Leading diagonal reports asset variances while off-diagonals 
are covariance pair estimates. 

Asset Bonds EUA Commodities Currencies Equities Lumber REITS 

Panel A 

Bonds 0.004 -0.003 -0.002 -0.001 -0.003 -0.001 -0.001 
EUA -0.003 0.207 0.018 -0.003 0.019 0.017 0.018 
Commodities -0.002 0.018 0.056 -0.002 0.017 0.015 0.014 
Currencies -0.001 -0.003 -0.002 0.008 -0.001 -0.002 0.000 
Equities -0.003 0.019 0.017 -0.001 0.040 0.018 0.034 
Lumber -0.001 0.017 0.015 -0.002 0.018 0.206 0.019 
REITS -0.001 0.018 0.014 0.000 0.034 0.019 0.052 

 
 

Asset Bonds EUA Commodities Currencies Equities GEO Lumber REITS 

Panel B 

Bonds 0.009 -0.004 -0.001 -0.001 0.000 -0.003 0.001 0.002 
EUA -0.004 0.245 0.001 -0.005 0.013 0.018 0.017 0.010 
Commodities -0.001 0.001 0.080 -0.003 0.009 -0.012 0.018 0.007 
Currencies -0.001 -0.005 -0.003 0.010 -0.005 -0.001 -0.007 -0.005 
Equities 0.000 0.013 0.009 -0.005 0.040 0.005 0.023 0.028 
GEO -0.003 0.018 -0.012 -0.001 0.005 0.315 -0.001 0.003 
Lumber 0.001 0.017 0.018 -0.007 0.023 -0.001 0.355 0.018 
REITS 0.002 0.010 0.007 -0.005 0.028 0.003 0.018 0.042 

 
 

Asset Bonds EUA Commodities Currencies Equities GEO Lumber NGEO REITS 
Panel C 

Bonds 0.017 -0.005 -0.001 -0.001 0.000 -0.003 0.001 0.000 0.003 
EUA -0.005 0.285 -0.004 -0.005 0.014 0.018 0.027 0.010 0.012 
Commodities -0.001 -0.004 0.096 -0.004 0.010 -0.011 0.019 -0.019 0.008 
Currencies -0.001 -0.005 -0.004 0.017 -0.006 0.000 -0.008 -0.002 -0.005 
Equities 0.000 0.014 0.010 -0.006 0.053 0.009 0.028 0.005 0.032 
GEO -0.003 0.018 -0.011 0.000 0.009 0.335 0.008 0.111 0.008 
Lumber 0.001 0.027 0.019 -0.008 0.028 0.008 0.339 0.006 0.026 
NGEO 0.000 0.010 -0.019 -0.002 0.005 0.111 0.006 0.232 0.000 
REITS 0.003 0.012 0.008 -0.005 0.032 0.008 0.026 0.000 0.053 
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Table 4: Asset allocation and portfolio optimization results for category one data 
Table 4 presents optimization results for the Naïve Diversification, CAPM and Minimum Volatility strategies for category one data from 07/10/2017 – 13/10/2022 showing annualized 
expected returns, volatility and Sharpe Ratios. Expected returns are backed out of a CAPM model using the asset universe as a market benchmark. Asset covariances are estimated 
using the Ledoit-Wolf (2004) shrunk covariance approach. For all strategies column (1) is a Benchmark portfolio that incorporates EUA. (2) is the Benchmark portfolio. The Naïve 
Diversification strategy applies a 1/N weighting to all assets. CAPM and Minimum Volatility uniquely permit short-selling but limits optimal positions to take values between +/-1. 
The CAPM strategy objective is to maximize the portfolio Sharpe Ratio. The Minimum Volatility strategy minimizes portfolio volatility. It is assumed that positions are held from 
beginning of period to end-of-period. A very simple transaction cost model sums all the weight changes multiplied by 10 bps, simulating fixed percentage broker commission costs. 
 

Asset 

Naive Diversification (1/N) 
  

CAPM 
  

Minimum Volatility 
    

(1) (2)   (1) (2)   (1) (2) 

Bonds 0.143 0.167  0.023 0.029  0.427 0.445 

EUA 0.143   0.195   0.026  

Commodities 0.143 0.167  0.181 0.207  0.136 0.139 

Currencies 0.143 0.167  0.033 0.128  0.180 0.171 

Equities 0.143 0.167  0.167 0.192  0.143 0.167 

Lumber 0.143 0.167  0.196 0.217  0.024 0.024 

REITS 0.143 0.167   0.205 0.227   0.065 0.055 

         
Return 0.097 0.039   0.178 0.076   0.067 0.039 

Volatility 0.137 0.126  0.185 0.163  0.066 0.065 

SR 0.709 0.313   0.860 0.350   0.710 0.300 
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Table 5: Asset allocation and portfolio optimization results for category two data 
Table 5 presents optimization results for the Naïve Diversification, CAPM and Minimum Volatility strategies for category one data from 01/03/2021 – 13/10/2022 showing annualized 
expected returns, volatility and Sharpe Ratios. Expected risk-adjusted returns are backed out of a CAPM model using the asset universe as a market benchmark. Asset covariances are 
estimated using the Ledoit-Wolf (2004) shrunk covariance approach. For all strategies column (1) is a Benchmark portfolio that incorporates GEO and EUA. (2) incorporates GEO 
alone into the benchmark portfolio. (3) is the Benchmark portfolio. The Naïve Diversification strategy applies a 1/N weighting to all assets. CAPM and Minimum Volatility uniquely 
permit short-selling but limits optimal positions to take values between +/-1. The CAPM strategy objective is to maximize the portfolio Sharpe Ratio. The Minimum Volatility strategy 
minimizes portfolio volatility. It is assumed that positions are held from beginning of period to end-of-period. A very simple transaction cost model sums all the weight changes 
multiplied by 10 bps, simulating fixed percentage broker commission costs. 
 

Asset 

Naive Diversification (1/N) 
  

CAPM 
  

Minimum Volatility 
    

(1) (2) (3)   (1) (2) (3)   (1) (2) (3) 

Bonds 0.125 0.143 0.167  0.019 0.022 1.000  0.181 0.150 0.167 

EUA 0.125    0.167    0.040   

Commodities 0.125 0.143 0.167  0.152 0.188 -0.239  0.125 0.130 0.111 

Currencies 0.125 0.143 0.167  0.019 0.012 1.000  0.351 0.382 0.397 

Equities 0.125 0.143 0.167  0.139 0.169 -0.049  0.125 0.143 0.167 

GEO 0.125 0.143   0.170 0.203   0.038 0.038  

Lumber 0.125 0.143 0.167  0.175 0.207 -0.368  0.015 0.014 0.010 

REITS 0.125 0.143 0.167   0.158 0.199 -0.343   0.125 0.143 0.148 

            
Return 0.069 0.028 -0.020   0.175 0.106 0.041   0.062 0.042 0.016 

Volatility 0.145 0.143 0.139  0.195 0.202 0.293  0.072 0.072 0.066 

SR 0.472 0.196 -0.180   0.790 0.430 0.070   0.580 0.300 -0.060 
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Table 6: Asset allocation and portfolio optimization results for category three data 
Table 6 presents optimization results for the Naïve Diversification, CAPM and Minimum Volatility strategies for category one data from 04/08/2021 – 13/10/2022 showing annualized 
expected returns, volatility and Sharpe Ratios. Expected risk-adjusted returns are backed out of a CAPM model using the asset universe as a market benchmark. Asset covariances are 
estimated using the Ledoit-Wolf (2004) shrunk covariance approach. For all strategies column (1) is a Benchmark portfolio that incorporates NGEO, GEO and EUA. (2) combines 
EUA and NGEO with the Benchmark portfolio. (3) is Benchmark portfolio that includes GEO and NGEO. (4) only adds the NGEO to the Benchmark portfolio. (5) is the Benchmark 
portfolio. The Naïve Diversification strategy applies a 1/N weighting to all assets. CAPM and Minimum Volatility uniquely permit short-selling but limits optimal positions to take 
values between +/-1. The CAPM strategy objective is to maximize the portfolio Sharpe Ratio. The Minimum Volatility strategy minimizes portfolio volatility. It is assumed that 
positions are held from beginning of period to end-of-period. A very simple transaction cost model sums all the weight changes multiplied by 10 bps, simulating fixed percentage 
broker commission costs. 
 

Asset 

Naive Diversification (1/N) 
  

CAPM 
  

Minimum Volatility 
    

(1) (2) (3) (4) (5)   (1) (2) (3) (4) (5)   (1) (2) (3) (4) (5) 

Bonds 0.111 0.125 0.125 0.143 0.167  0.011 0.011 0.022 0.054 1.000  0.210 0.179 0.186 0.143 0.167 

EUA 0.111 0.125     0.145 0.170     0.043 0.039    

Commodi-
ties 0.111 0.125 0.125 0.143 0.167  0.127 0.153 0.153 0.181 -0.235  0.111 0.125 0.125 0.121 0.102 

Currencies 0.111 0.125 0.125 0.143 0.167  0.011 0.011 0.009 0.020 1.000  0.323 0.334 0.353 0.383 0.435 

Equities 0.111 0.125 0.125 0.143 0.167  0.125 0.146 0.143 0.168 -0.049  0.111 0.125 0.125 0.142 0.157 

GEO 0.111  0.125    0.152  0.173    0.019  0.018   

Lumber 0.111 0.125 0.125 0.143 0.167  0.153 0.178 0.173 0.197 -0.364  0.017 0.012 0.015 0.010 0.010 

NGEO 0.111 0.125 0.125 0.143   0.145 0.170 0.168 0.192   0.054 0.061 0.054 0.058  

REITS 0.111 0.125 0.125 0.143 0.167   0.132 0.161 0.160 0.189 -0.352   0.111 0.125 0.125 0.143 0.128 

                  
Return 0.026 0.024 0.011 0.006 -0.045   0.122 0.108 0.089 0.065 0.078   0.048 0.046 0.038 0.033 0.010 

Volatility 0.157 0.146 0.156 0.141 0.145  0.207 0.199 0.213 0.189 0.303  0.083 0.081 0.079 0.077 0.066 

SR 0.164 0.162 0.068 0.045 -0.308   0.490 0.440 0.330 0.240 0.190   0.340 0.320 0.220 0.170 -0.150 
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Table 7: Daily volatility and return spillover results for category one data 
In Table 7 we apply the Diebold-Yilmaz (2012) framework based on the general forecast variance decomposition introduced by Pesaran and Shin (1998) to construct volatility and 
return spillovers for the respective category one data: 07/10/2017 – 13/10/2022. Specifically, consider a covariance stationary N-variable VAR(p), 𝑥𝑥𝑡𝑡 = ∑ 𝜙𝜙𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 +𝑝𝑝

𝑖𝑖=1
𝜀𝜀𝑡𝑡 ,    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀 ~ (0,Σ) is a vector of i.i.d. disturbances. The moving average representation is given by 𝑥𝑥𝑡𝑡 =  ∑ 𝐴𝐴𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖 ,∞

𝑖𝑖=1  where for the NxN coefficient matrices 𝐴𝐴𝑖𝑖 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 < 0. 
We compute the fraction of the H-step-ahead error variance in 𝑥𝑥𝑖𝑖 forecasts due to shocks to 𝑥𝑥𝑗𝑗,∀ 𝑗𝑗 ≠ 𝑖𝑖 for each 𝑖𝑖. The directional volatility (return) spillover received by asset 𝑖𝑖 from 

all other assets 𝑗𝑗 is written as: 𝑆𝑆𝑖𝑖.
𝑔𝑔(𝐻𝐻) = 

∑ 𝜃𝜃𝚤𝚤𝚤𝚤� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁
∗ 100. Similarly, the directional volatility (return) spill-overs from asset 𝑗𝑗 to all other assets 𝑖𝑖 may be written as: 𝑆𝑆.𝑖𝑖

𝑔𝑔(𝐻𝐻) =

 
∑ 𝜃𝜃𝚥𝚥𝚥𝚥� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁

𝑗𝑗≠𝑖𝑖 
𝑁𝑁

∗ 100. Accordingly, net spillover from asset 𝑖𝑖 to all other assets may be written as 𝑆𝑆𝑖𝑖
𝑔𝑔(𝐻𝐻) = 𝑆𝑆.𝑖𝑖

𝑔𝑔(𝐻𝐻)−  𝑆𝑆𝑖𝑖.
𝑔𝑔(𝐻𝐻)..In the table ‘from’ and ‘to’ others provides directional 

spillovers in percentage. Net spill over is calculated from ‘to’ minus ‘from’ others results. Panel A presents daily volatility and respective net spillovers, while Panel B provides 
corresponding results for expected returns 
 

Panel A: Volatility Spillover (%) 
Asset Bonds EUA Commodities Currencies Equities Lumber REITS from others Net Spillover 

Bonds 13.976 0.040 0.081 0.030 0.035 0.054 0.070 0.309 -0.026 
EUA 0.087 13.784 0.023 0.234 0.057 0.046 0.055 0.502 0.093 
Commodities 0.060 0.345 13.734 0.008 0.048 0.044 0.047 0.552 -0.149 
Currencies 0.015 0.051 0.007 14.174 0.019 0.005 0.015 0.112 0.188 
Equities 0.068 0.023 0.126 0.004 14.008 0.028 0.029 0.278 -0.080 
Lumber 0.028 0.032 0.120 0.009 0.014 14.074 0.008 0.212 0.025 
REITS 0.026 0.103 0.046 0.015 0.025 0.060 14.011 0.275 -0.051 
to others (spill over) 0.283 0.595 0.403 0.300 0.198 0.236 0.224 2.239  
to others (incl. own) 14.259 14.379 14.137 14.474 14.206 14.310 14.235 100.000   

Panel B: Return Spillover (%) 

Bonds 11.378 0.162 0.567 0.711 0.896 0.173 0.400 2.908 -0.819 
EUA 0.121 12.088 0.476 0.226 0.676 0.281 0.417 2.198 -0.681 
Commodities 0.542 0.436 10.266 0.232 1.631 0.268 0.911 4.020 -0.228 
Currencies 0.477 0.198 0.611 10.185 1.183 0.268 1.363 4.101 -2.058 
Equities 0.544 0.320 1.108 0.329 7.480 0.359 4.146 6.806 2.975 
Lumber 0.163 0.160 0.285 0.105 0.705 12.267 0.600 2.018 -0.333 
REITS 0.243 0.241 0.745 0.440 4.690 0.336 7.591 6.694 1.143 
to others (spill over) 2.089 1.517 3.792 2.043 9.781 1.686 7.837 28.745  
to others (incl. own) 13.467 13.605 14.058 12.228 17.261 13.953 15.429 100.000   
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Table 8: Daily volatility and return spillover results for category two data 
In Table 8 we apply the Diebold and Yilmaz (2012) framework based on the general forecast variance decomposition introduced by Pesaran and Shin (1998) to construct volatility 
and return spillovers for the respective category two data: 01/03/2021 – 13/10/2022. Specifically, consider a covariance stationary N-variable VAR(p), 𝑥𝑥𝑡𝑡 =
∑ 𝜙𝜙𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 ,    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀 ~ (0,Σ)𝑝𝑝
𝑖𝑖=1  is a vector of i.i.d. disturbances. The moving average representation is given by 𝑥𝑥𝑡𝑡 = ∑ 𝐴𝐴𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖 ,∞

𝑖𝑖=1  where for the NxN coefficient matrices 𝐴𝐴𝑖𝑖 =
0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 < 0. We compute the fraction of the H-step-ahead error variance in 𝑥𝑥𝑖𝑖 forecasts due to shocks to 𝑥𝑥𝑗𝑗,∀ 𝑗𝑗 ≠ 𝑖𝑖 for each 𝑖𝑖. The directional volatility (return) spillover received by 

asset 𝑖𝑖 from all other assets 𝑗𝑗 is written as:𝑆𝑆𝑖𝑖.
𝑔𝑔(𝐻𝐻) =  

∑ 𝜃𝜃𝚤𝚤𝚤𝚤� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁
∗ 100. Similarly, the directional volatility (return) spill-overs from asset 𝑗𝑗 to all other assets 𝑖𝑖 may be written as: 

𝑆𝑆.𝑖𝑖
𝑔𝑔(𝐻𝐻) = 

∑ 𝜃𝜃𝚥𝚥𝚥𝚥� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁
∗ 100. Accordingly, net spillover from asset 𝑖𝑖 to all other assets may be written as 𝑆𝑆𝑖𝑖

𝑔𝑔(𝐻𝐻) = 𝑆𝑆.𝑖𝑖
𝑔𝑔(𝐻𝐻)−  𝑆𝑆𝑖𝑖.

𝑔𝑔(𝐻𝐻). In the table ‘from’ and ‘to’ others provides 
directional spillovers in percentage. Net spill over is calculated from ‘to’ minus ‘from’ others results. Panel A presents daily volatility and respective net spillovers, while Panel B 
provides corresponding results for expected returns 

Panel A: Volatility Spillover (%) 

Asset Bonds EUA Commodities Currencies Equities GEO Lumber REITS from others Net Spillover 

Bonds 11.816 0.004 0.095 0.055 0.048 0.352 0.021 0.108 0.684 2.105 

EUA 0.014 12.248 0.032 0.099 0.052 0.029 0.006 0.021 0.252 0.271 
Commodities 0.039 0.263 12.065 0.007 0.007 0.005 0.069 0.046 0.435 -0.116 

Currencies 0.055 0.066 0.001 12.307 0.010 0.024 0.003 0.035 0.193 0.056 
Equities 0.049 0.041 0.022 0.007 12.158 0.063 0.018 0.142 0.342 0.051 
GEO 2.506 0.108 0.018 0.033 0.095 9.534 0.064 0.141 2.966 -2.417 

Lumber 0.044 0.010 0.108 0.024 0.045 0.009 12.245 0.015 0.255 -0.006 
REITS 0.083 0.031 0.044 0.025 0.136 0.067 0.068 12.047 0.453 0.055 
to others (spill over) 2.789 0.523 0.320 0.249 0.393 0.549 0.249 0.508 5.582  
to others (incl. own) 14.605 12.771 12.384 12.556 12.551 10.083 12.494 12.555 100.000  

Panel B: Return Spillover (%) 

Bonds 10.681 0.311 0.154 0.567 0.121 0.186 0.055 0.426 1.819 -0.589 
EUA 0.346 11.255 0.060 0.303 0.232 0.051 0.118 0.135 1.245 -0.119 
Commodities 0.103 0.137 11.035 0.467 0.347 0.064 0.174 0.175 1.465 -0.435 

Currencies 0.421 0.165 0.332 8.100 1.758 0.023 0.237 1.463 4.400 -0.362 
Equities 0.003 0.144 0.207 1.214 6.625 0.023 0.277 4.006 5.875 1.353 

GEO 0.178 0.216 0.064 0.099 0.197 11.560 0.032 0.155 0.940 -0.561 
Lumber 0.018 0.055 0.109 0.328 0.479 0.011 11.220 0.280 1.280 -0.213 

REITS 0.161 0.098 0.103 1.060 4.095 0.022 0.175 6.785 5.715 0.924 
to others (spill over) 1.230 1.127 1.031 4.038 7.228 0.380 1.066 6.639 22.739  
to others (incl. own) 11.911 12.381 12.065 12.138 13.853 11.939 12.287 13.424 100.000  
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Table 9: Daily volatility and return spillover results for category three data 
In Table 9 we apply the Diebold and Yilmaz (2012) framework based on the general forecast variance decomposition introduced by Pesaran and Shin (1998) to construct volatility 
and return spillovers for the respective category two data: 04/08/2021 – 13/10/2022. Specifically, consider a covariance stationary N-variable VAR(p), 𝑥𝑥𝑡𝑡 =
∑ 𝜙𝜙𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 ,    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀 ~ (0,Σ)𝑝𝑝
𝑖𝑖=1  is a vector of i.i.d. disturbances. The moving average representation is given by 𝑥𝑥𝑡𝑡 = ∑ 𝐴𝐴𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖 ,∞

𝑖𝑖=1  where for the NxN coefficient matrices 𝐴𝐴𝑖𝑖 =
0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 < 0. We compute the fraction of the H-step-ahead error variance in 𝑥𝑥𝑖𝑖 forecasts due to shocks to 𝑥𝑥𝑗𝑗,∀ 𝑗𝑗 ≠ 𝑖𝑖 for each 𝑖𝑖. The directional volatility (return) spillover received by 

asset 𝑖𝑖 from all other assets 𝑗𝑗 is written as:𝑆𝑆𝑖𝑖.
𝑔𝑔(𝐻𝐻) =  

∑ 𝜃𝜃𝚤𝚤𝚤𝚤� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁
∗ 100. Similarly, the directional volatility (return) spill-overs from asset 𝑗𝑗 to all other assets 𝑖𝑖 may be written as: 

𝑆𝑆.𝑖𝑖
𝑔𝑔(𝐻𝐻) = 

∑ 𝜃𝜃𝚥𝚥𝚥𝚥� (𝐻𝐻)1≤ 𝑗𝑗≤ 𝑁𝑁
𝑗𝑗≠𝑖𝑖 

𝑁𝑁
∗ 100. Accordingly, net spillover from asset 𝑖𝑖 to all other assets may be written as 𝑆𝑆𝑖𝑖

𝑔𝑔(𝐻𝐻) = 𝑆𝑆.𝑖𝑖
𝑔𝑔(𝐻𝐻)−  𝑆𝑆𝑖𝑖.

𝑔𝑔(𝐻𝐻). In the table ‘from’ and ‘to’ others provides 
directional spillovers in percentage. Net spill over is calculated from ‘to’ minus ‘from’ others results. Panel A presents daily volatility and respective net spillovers, while Panel B 
provides corresponding results for expected returns 

Panel A: Volatility Spillover (%) 

Asset Bonds EUA Commodities Currencies Equities GEO Lumber NGEO REITS from others Net  
Spillover 

Bonds 10.283 0.005 0.078 0.061 0.050 0.313 0.021 0.208 0.093 0.828 2.338 
EUA 0.018 10.655 0.030 0.086 0.070 0.028 0.008 0.201 0.014 0.456 0.315 
Commodities 0.012 0.056 9.755 0.016 0.014 0.042 0.130 0.770 0.315 1.356 -0.532 
Currencies 0.067 0.064 0.009 10.802 0.012 0.025 0.003 0.083 0.046 0.309 0.014 
Equities 0.064 0.047 0.034 0.010 10.600 0.061 0.015 0.017 0.263 0.512 0.208 
GEO 2.470 0.079 .052 0.039 0.085 8.115 0.058 0.039 0.174 2.996 -2.421 
Lumber 0.037 0.010 0.166 0.022 0.059 0.004 10.668 0.125 0.020 0.444 0.236 
NGEO 0.421 0.490 0.105 0.052 0.183 0.034 0.238 9.586 0.003 1.525 -1.374 
REITS 0.076 0.021 0.350 0.037 0.246 0.067 0.206 0.151 9.957 1.154 -0.226 
to others (spill over) 3.166 0.772 0.824 0.322 0.720 0.574 0.680 1.594 0.928 9.580  
to others (incl. own) 13.449 11.426 10.579 11.125 11.319 8.690 11.348 11.179 10.885 100.000   

Panel B: Return Spillover (%) 

Bonds 9.309 0.307 0.081 0.577 0.126 0.176 0.074 0.025 0.436 1.802 -0.596 
EUA 0.354 9.929 0.063 0.239 0.163 0.083 0.147 0.040 0.092 1.182 0.603 
Commodities 0.070 0.175 9.133 0.473 0.371 0.054 0.201 0.394 0.241 1.978 -0.534 
Currencies 0.428 0.117 0.340 7.038 1.531 0.001 0.288 0.050 1.318 4.073 -0.154 
Equities 0.003 0.105 0.221 1.031 5.771 0.047 0.342 0.037 3.554 5.340 1.527 
GEO 0.154 0.218 0.051 0.130 0.173 8.824 0.027 1.431 0.103 2.287 -0.194 
Lumber 0.013 0.092 0.181 0.393 0.635 0.025 9.223 0.033 0.517 1.888 -0.500 
NGEO 0.024 0.685 0.365 0.133 0.309 1.640 0.022 7.625 0.309 3.487 -3.441 
REITS 0.161 0.086 0.142 0.943 3.559 0.067 0.288 0.045 5.820 5.292 1.278 
to others (spill over) 1.206 1.785 1.444 3.920 6.867 2.093 1.388 2.056 6.569 27.329  
to others (incl. own) 10.515 11.714 10.577 10.957 12.638 10.917 10.612 9.681 12.389 100.000   
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Table 10: Portfolio strategy definitions for in-sample-out-of-time performance tests 
Portfolio strategy definitions for in-sample-out-of-time performance tests 
 

Portfolio                                                                                                    Description Period 

Category 1  
Benchmark + C  Benchmark + EUA 

07 Oct 2017 –  
13 Oct 2022 Benchmark  Bonds, Commodities, Currencies, Equities, Lumber, REITS 

Category 2 Period 
Benchmark + G Benchmark + GEO 

01 March 2021 –  
13 Oct 2022 

Benchmark + GC Benchmark + GEO + EUA 

Benchmark Bonds, Commodities, Currencies, Equities, Lumber, REITS 

Category 3 Period 
Benchmark + N Benchmark + NGEO 

04 August 2021 –  
13 Oct 2022 

Benchmark + NC Benchmark + NGEO + EUA 

Benchmark + NG Benchmark + NGEO + GEO 

Benchmark + NGC Benchmark + NGEO + GEO + EUA 

Benchmark Bonds, Commodities, Currencies, Equities, Lumber, REITS 
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Table 11: Test results for differences in in-sample-out-of-time portfolio Sharpe Ratios for category one data 
Table 11 presents in-sample-out-of-time performance results for difference in Sharpe Ratios for Naïve Diversification, Long, Long-Short and the Minimum Volatility strategies using 
category one data. We report average in-sample out-of-time (t+5, t+10, t+20) Sharpe Ratios from return bootstraps on the Benchmark + C portfolio and the Benchmark and the 
difference (Diff) thereof. The test algorithm is extensively outlined in Ledoit-Wolf (2008) and is as follows. We generate a series of portfolio returns on the basis on a 5, 10 and 20-
day holding periods using optimal weights generated using the prior 90 days asset price history. Hence the 𝑖𝑖th difference between generated Sharpe Ratios for portfolios of the same 
strategy as for all portfolio pairs (𝑗𝑗,𝑘𝑘) is:Δ�𝑖𝑖 = 𝑆𝑆𝑅𝑅𝚥𝚥𝚤𝚤

� −𝑆𝑆𝑅𝑅𝑘𝑘𝚤𝚤� and construct an inverted studentized bootstrap confidence interval for the difference in the Sharpe Ratios. We conclude 
that Δ�𝑖𝑖 is statistically different from zero if zero is not contained in the obtained interval. We generate stationary block bootstraps in a Politis and Romano (1992) sense and resample 
blocks of pairs from the observed pairs �𝑟𝑟𝑡𝑡𝑡𝑡, 𝑟𝑟𝑡𝑡𝑘𝑘�

′
 𝑡𝑡 = 1,… ,𝑇𝑇 with replacement using optimal block samples for return pair series generated above. We generate 10,000 bootstrap 

samples and test 𝐻𝐻0: Δ𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 applying the decision criteria outlined above. 
 

Strategy 
Holding Period (days) Benchmark + C Benchmark Diff 

 

Naive Diversification 

5 0.318 0.130 0.188 *** 

10 0.457 0.194 0.263 *** 

20 0.652 0.275 0.377 *** 

Long 

5 0.459 0.244 0.215 *** 

10 0.600 0.303 0.296 *** 

20 0.731 0.295 0.436 *** 

Long-Short 

5 0.104 0.019 0.085  

10 0.175 0.047 0.129  

20 0.258 -0.038 0.296 *** 

Minimum Volatility 

5 0.299 0.179 0.119 *** 

10 0.428 0.236 0.192 *** 

20 0.628 0.359 0.269 *** 
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Table 12: Test results for differences in in-sample-out-of-time portfolio Sharpe Ratios for category two data 
Table 12 presents in-sample-out-of-time performance results for difference in Sharpe Ratios for Naïve Diversification, Long, Long-Short and the Minimum Volatility strategies using 
category two data. We report average in-sample out-of-time (t+5, t+10, t+20) Sharpe Ratios from return bootstraps on the Benchmark + GC, Benchmark + G, the Benchmark portfolio 
and their respective differences to the Benchmark portfolio (Diff). The test algorithm is extensively outlined in Ledoit-Wolf (2008) and is as follows. We generate a series of portfolio 
returns on the basis on a 5, 10 and 20-day holding periods using optimal weights generated using the prior 90 days asset price history. Hence the 𝑖𝑖th difference between generated 
Sharpe Ratios for portfolios of the same strategy as for all portfolio pairs (𝑗𝑗,𝑘𝑘) is:Δ�𝑖𝑖 = 𝑆𝑆𝑅𝑅𝚥𝚥𝚤𝚤

� −𝑆𝑆𝑅𝑅𝑘𝑘𝚤𝚤� and construct an inverted studentized bootstrap confidence interval for the difference 
in the Sharpe Ratios. Δ�𝑖𝑖 is statistically different from zero if zero is not contained in the obtained interval. We generate stationary block bootstraps in a Politis and Romano (1992) 
sense and resample blocks of pairs from the observed pairs �𝑟𝑟𝑡𝑡𝑡𝑡,𝑟𝑟𝑡𝑡 𝑘𝑘�

′
 𝑡𝑡= 1, …, 𝑇𝑇 with replacement using optimal block samples for return pair series generated above. We generate 

10,000 bootstrap samples and test 𝐻𝐻0: Δ𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 applying the decision criteria outlined above. 
 
 

Strategy 
Holding Period 

(days) 
Benchmark + G Diff 

 
Benchmark + GC Diff 

 
Benchmark 

Naive Diversification 

5 -0.078 0.098  0.000 0.176  -0.176 

10 -0.085 0.156  0.025 0.266  -0.240 

20 -0.101 0.291  0.052 0.444  -0.392 

Long 

5 0.706 0.608 *** 0.682 0.584 *** 0.097 

10 1.185 0.874 *** 1.107 0.795 *** 0.311 

20 1.558 1.080 *** 1.374 0.896 *** 0.478 

Long-Short 

5 0.874 0.846 *** 1.799 1.771 *** 0.028 

10 1.405 1.210 *** 1.245 1.050 *** 0.195 

20 2.121 1.756 *** 0.758 0.393 *** 0.365 

Minimum Volatility 

5 0.092 0.022  0.049 -0.021  0.070 

10 0.172 0.042  0.102 -0.027  0.129 

20 0.237 0.024  0.184 -0.029  0.212 
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Table 13: Test results for differences in in-sample-out-of-time portfolio Sharpe Ratios for category three data 
Table 13 presents in-sample-out-of-time performance results for difference in Sharpe Ratios for Naïve Diversification, Long, Long-Short and the Minimum Volatility strategies using 
category three data. We report average in-sample out-of-time (t+5, t+10, t+20) Sharpe Ratios from return bootstraps on portfolios that include NGEO, GEO and EUA and their 
respective differences to the Benchmark portfolio (Diff). We generate a series of portfolio returns on the basis on a 5, 10 and 20-day holding periods using optimal weights generated 
using the prior 90 days asset price history. Hence the 𝑖𝑖th difference between generated Sharpe Ratios for portfolios of the same strategy as for all portfolio pairs (𝑗𝑗, 𝑘𝑘) is:Δ�𝑖𝑖 = 𝑆𝑆𝑅𝑅𝚥𝚥𝚤𝚤

� −
𝑆𝑆𝑅𝑅𝑘𝑘𝚤𝚤� and construct an inverted studentized bootstrap confidence interval for the difference in the Sharpe Ratios. Δ�𝑖𝑖 is statistically different from zero if zero is not contained in the 
obtained interval. We generate stationary block bootstraps in a Politis and Romano (1992) sense and resample blocks of pairs from the observed pairs �𝑟𝑟𝑡𝑡𝑡𝑡,𝑟𝑟𝑡𝑡 𝑘𝑘�

′
 𝑡𝑡= 1, …, 𝑇𝑇 with 

replacement using optimal block samples for return pair series generated above. We generate 10,000 bootstrap samples and test 𝐻𝐻0: Δ𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑖𝑖 = 0 using the decision criteria above. 
 

Strategy 

Holding 
period 
(days) 

Benchmark 
+ N 

Diff 
 

Benchmark 
+ NC 

Diff 
 

Benchmark 
+ NG 

Diff 
 

Benchmark 
+ NGC 

Diff 
 

Benchmark 

Naive  
Diversification 

5 -0.805 -0.187  -0.790 -0.172  -0.874 -0.256 ** -0.842 -0.224  -0.618 

10 -1.342 -0.292 ** -1.234 -0.184  -1.393 -0.343 ** -1.269 -0.219  -1.050 

20 -2.679 -0.624 *** -2.314 -0.259  -2.659 -0.604 *** -2.357 -0.302 ** -2.055 

Long 

5 0.167 0.090  0.001 -0.076  0.168 0.091  0.147 0.070  0.077 

10 0.166 0.027  0.039 -0.100  0.274 0.135  0.323 0.184  0.139 

20 -0.256 -0.261  -0.307 -0.313  0.081 0.076  0.249 0.244  0.005 

Long-Short 

5 0.846 0.300 *** 0.661 0.115  0.836 0.290 *** 0.742 0.196 *** 0.546 

10 1.359 0.413 *** 1.057 0.110 ** 1.252 0.305 *** 1.162 0.215 *** 0.946 

20 1.644 0.288 *** 1.258 -0.097  1.783 0.428 *** 1.625 0.270 *** 1.355 

Minimum  
Volatility 

5 -0.500 -0.287 *** -0.671 -0.458 *** -0.748 -0.535 *** -0.860 -0.647 *** -0.213 

10 -0.873 -0.476 *** -1.130 -0.733 *** -1.278 -0.880 *** -1.388 -0.990 *** -0.398 

20 -1.658 -0.919 *** -2.020 -1.281 *** -2.198 -1.459 *** -2.348 -1.608 *** -0.740 
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Appendix Tables 
 
Table A1: Summary statistics for in-sample out-of-time rolling weights for category one, two and three data 
The table provides in-sample out-of-time summary statistics for rolling weights for Benchmark + C (category one data), Benchmark + G (category two data) and Benchmark + N 
(category three data) for each strategy. Portfolio descriptions are presented in Table 10. Max and Min report the maximum and minimum weights in the respective series while Abs 
Mean reports the mean of the absolute optimal weight series. The column EUA represents the statistics from the rolling optimal in-sample out-of-time weights from the Benchmark + 
C portfolio using category one data. The column GEO is respectively from Benchmark + G using category two data. The column NGEO represents Benchmark + N using category 
three data. The algorithm works as follows. Using data from t-90 days, we estimate optimal weights per portfolio and hold these positions for t+20 days. The algorithm then shifts by 
a day. Consequently, we obtain a time series of length T-90 from which we calculate summary statistics for the columns EUA, GEO and NGEO. 
 

Strategy 

 
EUA GEO NGEO 

Naive Diversification 

Max 0.143 0.143 0.143 

Min 0.143 0.143 0.143 

Abs Mean 0.143 0.143 0.143 

Long 

Max 0.305 0.237 0.223 

Min 0.000 0.000 0.000 

Abs Mean 0.160 0.131 0.081 

Long-Short 

Max 0.305 0.238 0.223 

Min -1.000 -0.490 -0.538 

Abs Mean 0.266 0.255 0.242 

Minimum Volatility 

Max 0.138 0.109 0.113 

Min 0.000 0.024 0.056 

Abs Mean 0.057 0.060 0.088 
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Appendix Figures 
 
Figure A1: Rolling 250-day rolling return correlations between traditional assets and European 
Emission Allowances (EUA) 
The figure shows rolling 250-day correlation for category one data (07/10/2017 – 13/10/2022). The horizontal axis shows 
years while the vertical axis shows the Bravais-Pearson correlation coefficient (./100) of all assets with EUA. 
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Figure A2: Rolling 60-day rolling correlation between traditional assets with GEO 
The figure shows rolling 60-day correlation for category two data (01/03/2022 – 13/10/2022). The horizontal axis shows date 
measured in year and month while the vertical axis shows the Bravais-Pearson correlation coefficient (./100) of all assets with 
GEO. 
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Figure A3: Rolling 60-day rolling correlation between traditional assets with NGEO 
The figure shows rolling 60-day correlation for category three data (04/08/2021 – 13/10/2022). The horizontal axis shows the 
date measured in year and month while the vertical axis shows the Bravais-Pearson correlation coefficient (./100) of all assets 
with NGEO. 
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Figure A4: Rolling 20-day volatility for all assets 
The figure shows rolling 20-day volatility for all assets. The horizontla axis shows the Year. The vertical axis shows Volatility 
(./100) 
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